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Abstract— Motion sensing and tracking with IMU data is
essential for spatial intelligence, which however is challenging
due to the presence of time-varying stochastic bias. IMU bias is
affected by various factors such as temperature and vibration,
making it highly complex and difficult to model analytically.
Recent data-driven approaches using deep learning have shown
promise in predicting bias from IMU readings. However, these
methods often treat the task as a regression problem, overlooking
the stochatic nature of bias. In contrast, we model bias,
conditioned on IMU readings, as a probabilistic distribution
and design a conditional diffusion model to approximate this
distribution. Through this approach, we achieve improved
performance and make predictions that align more closely with
the known behavior of bias.

I. INTRODUCTION

3D motion tracking is essential to endow mobile devices
and autonomous vehicles with spatial intelligence. Due to
the recent advancements in MEMS sensing technology, 6-
axis IMUs measuring angular velocity and linear acceleration
have become ubiquitous and made it possible to estimate
3D motion for sensor platforms at edge with compact size,
minimal weight, low power consumption and cost (SWaP-C).
However, naive integration of IMU measurements to offer
3D odometry (i.e., acceleration, rotation and velocity) or
dead reckoning – without aiding sources such as GPS and
vision – often is not reliable and diverges in a very short
period of time. Better solutions of inertial-only odometry
(IOO) than naive inertial integration are desperately needed
in practice. For example, consider hand tracking in mobile
AR/VR applications, highly dynamic hands can easily move
out of the tracking camera’s field of view (FOV), leaving
only IMU data available to keep motion tracking alive.

If IMU measurements were clean and noise free, then naive
inertial integration would solve the IOO problem. The reality
is much bitter, primarily due to the time-varying stochastic
biases that significantly corrupt the inertial signals. As such,
in order to find a better IOO solution, it is almost inevitable
to better find IMU bias, which is precisely what this paper
seeks to address. IMU bias represents an offset of the output
from the input value and encompasses many different types
of bias parameters such as in-run bias stability, turn-on bias
repeatability, and bias over temperature. Many unforeseeable
factors such as temperature and vibrations can affect the
IMU bias, which makes it impossible to correctly model
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it [1], although there are simplified but useful models such
as random walk widely used in practice [2], [3].

With the emerging of deep learning, there are attempts
to model IMU bias in a data-driven manner with neural
networks [4]. These approaches have demonstrated the possi-
bility of regressing bias from IMU readings and subsequently
integrating the IMU data to estimate motion with reasonable
accuracy over short periods. In particular, one may use a
differentiable integration module to integrate IMU readings
with the predicted bias removed, and compare the result
motion with the ground truth [5], [6]. However, it cannot
guarantee the predicted correction to IMU reading is the
actual bias. This is because there exists other correction to
the IMU reading that can achieve the same or even better
integrated motion result, but very different from the true
bias. When the supervision is provided indirectly through
the integrated motion, the network can learn to make these
spurious predictions instead of the real bias. This may not
generalize to new data, because the learned correction is
not an intrinsic property of IMU, as bias does. Alternatively,
one can directly use ground truth bias for supervision [7].
This method currently only shows to work when integrated
with camera in an optimization based VINS system. As we
show in the experiment, the performance of this method is
inferior compared with indirectly supervised methods. Both
approaches assume a single true bias value for a given IMU
reading, framing the problem as a regression task.

In this paper, we propose to model the IMU bias naturally
as a probability distribution conditioned on the inertial reading,
instead of a fixed value. This formulation, combined with
direct supervision, allows for more accurate and faithful
bias prediction. To model this complex distribution, we
leverage diffusion model, which has shown promising results
in capturing distributions with high uncertainity in tasks
such as action planning [8] and human trajectory prediction
[9]. In particular, we design a conditional diffusion model
that takes feature extracted from the IMU reading as an
additional condition code to approximate the underlying IMU-
conditioned bias distribution. The IOO with the proposed
diffusion model is shown to outperform the regression-
based approaches (with both direct and indirect supervision).
Additionally, our predicted bias closely resembles to the
ground truth in terms of magnitude and variation patterns,
showing superior accuracy and generalization.

In summary, the main contributions of this paper include:
• We, for the first time, design a lightweight diffusion

model to learn IMU bias for IOO in a data-driven manner,
by naturally modeling bias as a probability distribution
conditioned on inertial measurements.



• We experimentally validate that the proposed diffusion
model achieves more accurate bias prediction, confirming
that our probabilistic modeling approach is effective,
outperforming regression-based methods, both with
direct and indirect supervision.

II. RELATED WORK

Many IOO methods exist and can be categorized into
model-free and model-based approaches, depending on
whether or not the IMU bias is explicitly modeled.

A. Model-free Method

Early work explores to leverage motion pattern, with
primary applications in Pedestrian Dead Reckoning (PDR)
scenarios. Heuristic algorithms such as step counting algo-
rithm with step length estimation [10] and stationary period
detection with zero velocity update (ZUPT) [11] are explored.
A system combine multiple heuristic algorithms working on
mobile phone is presented in [12]. In recent years, there is
attempt to use deep learning neural network, to learn to regress
the motion from IMU reading end-to-end [13], [14], [15], [16],
[17], [18], [19]. These methods show promising results on
PDR scenarios, suppressing the classical method. Positional
displacement and velocity are explored as the target for
network prediction. Some work leverages the equivariance in
the IMU reading, as a way to enable self-supervised learning
[20] or boost the performance [21], further pushing the limit
of this method. However, these methods still implicitly rely on
motion pattern. Essentially, these methods use deep learning
to capture motion pattern in a data-driven fashion. Noticeably,
[19] shows such end-to-end learning can work in drone-racing
scenario, though it only works when training and testing is
on the same trajectory. In this case, the high-speed drone
motion for a particular trajectory becomes a complex motion
pattern. This shows deep learning can learn non-trivial motion
pattern. Yet, it still can’t break the theoretical limitation of the
reliance on the patterned motion. In this work, we consider
general scenario without patterned motion assumption. In
this scenario, model-free method shows inferior performance
because it struggles to find motion pattern.

B. Model-based Method

Model-based method aims to estimate the bias from IMU
readings, then remove the bias, and use integration to get
motion estimation. Early analysis of IMU bias shows many
factors such as temperature, vibration and impacts, all affect
IMU bias [1]. However, the compound effect is hard to model
with analytical model. Popular in the system with IMU and
other sensors, random walk model [22] is a simplified choice
for bias modeling. It models the bias evolution as a Brownian
noise process. However, such model has limited accuracy,
and it can’t be used without other sensors. Also, it typically
requires collecting long period stationary IMU readings for
offline calibration to get model parameters.

Recent deep learning methods offer new way to model
bias. Since the end goal is to remove the bias, this approach
is also referred as denoising approach. Since bias is not

directly available as data, some approaches use indirect
supervision from integrated motion, leveraging a differentiable
integration process. The first work [23] estimates gyro bias
only, with integrated rotation as training data. [5] proposes
to use supervision from integrated pre-integration terms to
regress bias. Recent work [6] uses integrated motion to
regress both bias and its uncertainty. It achieves state of
the art result on a few datasets. However, indirect supervision
has a misalignment between their training target and the
network output. Since multiple IMU readings can produce
the same integrated result, supervising with integrated result
can’t guarantee the network can learn the actual bias instead
of predicting other signals. Our experiment shows methods
trained with indirect supervision will make spurious prediction
that is very different from actual bias. This may hurt the
generalization ability, since other signals might not generalize
to new data even for the same IMU.

Close to our work, [7] proposes to use direct supervision
from bias for training. However, it only demonstrates the
performance when fusing the bias prediction with vision in
a joint factor graph system. As our experiment shows, such
direct supervision under regression setting will have limited
accuracy. Our method follow the deep learning approach
for bias modeling using direct bias supervision. However,
different from all the work mentioned above, we deviates
from the regression formulation, and treats the bias given
IMU reading as a conditional probability distribution.

III. INERTIAL-ONLY ODOMETRY

While inertial navigation systems (INS) aided by different
exteroceptive sensors (such as vision and GPS) have been
widely studied in the literature (e.g., see [24]), IOO requires
further investigation as aiding sensors can easily degrade
or fail in practice. In this section, we will revisit the IOO
problem from an INS perspective while focusing on the bias
modeling challenges.

A. Inertial Navigation

IOO shares the same IMU kinematics as INS to esti-
mate motion (i.e., position, rotation and velocity) using
IMU (accelerometer and gyroscope) measurements. Each
accelerometer measures proper acceleration on only one axis,
and are therefore usually found in groups of three orthogonal
devices on a single low cost MEMS chip. However, low-
cost accelerometer measurements are far from ideal and are
corrupted by noise and bias:

am(t) = C(IGq̄(t))
(
Ga(t)− Gg

)
+ ba(t) + na(t) (1)

where I
Gq̄ is the unit quaternion that represents the rotation

from the global frame of reference {G} to the IMU frame
{I} (i.e., corresponding to the rotation matrix C(IGq̄)),

Ga is
the true acceleration of the IMU in the global frame {G}, Gg
is the gravitational acceleration expressed in {G}, and na ∼
N (0,Na) is zero-mean, white Gaussian noise, and ba is the
bias changing over time. Like the accelerometer, gyroscope
measures angular velocity of the sensor and suffers from
noise and bias, and sometimes, misalignment and scale errors.



Moreover, gyroscope measurements are also influenced by
acceleration (i.e. g-sensitivity), whose magnitude is negligible
if it is within the range of the additive white noise ng , while
in some low-cost MEMS hardware, it can be more significant:

ωm(t) = Tg
Iω(t) +Ts

Ia+ bg(t) + ng(t) (2)

where Tg is the shape matrix causing both misalignment and
scale errors in the gyro measurements, Ts is the g-sensitivity
coefficient, ng ∼ N (0,Ng) is zero-mean white Gaussian
noise, and the bias bg is time-varying and random.

The INS kinematic model is given by [22]:
I
G
˙̄q(t) =

1

2
Ω
(
Iω(t)

)
I
Gq̄(t) (3)

Gṗ(t) = Gv(t) (4)
Gv̇(t) = Ga(t) (5)

where Iω =
[
ω1 ω2 ω3

]T
is the true rotational velocity

of the IMU, and Ω(ω) is defined by:

Ω(ω) =

[
−⌊ω×⌋ ω
−ωT 0

]
, ⌊ω×⌋ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


Using the IMU measurements and assuming known bias
models (e.g., random walk), 3D motion estimates can be
obtained by integrating the above continuous-time kinematics.
Clearly, the quality of IMU data (affected by noise and bias)
determines the motion accuracy.

Because of the (aided) INS observability properties [25],
any method that tries to bypass bias modeling and directly
predict global position or velocity has the fundamental
limitation on the target motion pattern. As we focus on
general scenario without prior motion pattern assumption,
we limit to estimate motion increment (i.e., odometry), while
only assuming known initials if absolute motion is needed.

B. Modeling Bias

As evident, it is critical to find biases for IOO from IMU
measurements in order to be able to perform accurate inertial
integration to estimate motion:[

bg(t)
ba(t)

]
= fπ(ωm(t),am(t)) (6)

where fπ is some estimator. However, finding such estimator
is non-trivial because the bias is not deterministic. As an IMU
is a physical electronic sensor, factors such as temperature,
impacts, vibration, and quantization noise all affect it [1].
These compound effects are complex and difficult to model.
Moreover, many of these factors are time-varying, giving the
bias a stochastic nature. Not only does the bias change as
the IMU operates, but also after the power cycles further
complicating model development. As such, it is almost
impossible to analytically model the IMU bias.

While building an exact model is challenging, analysis
on bias as a black-box signal using Power Spectral Density
(PSD) [26] and Allan variance analysis [27] reveal certain
bias characteristic, such as angle/velocity random walk,
bias instability and rate ramp. These characteristics become
standard in the industry for IMU sensors [28], [29]. However,
utilizing all these characteristics to build an estimator is

difficult because some of them, like bias instability are defined
only in frequency domain, without state-space equivalent.

As approximation, in practice, a simplified model leverag-
ing rate random walk is commonly used as the bias model
[2], [3]. Specifically, it assumes the bias dynamic model as:[

ḃg(t)

ḃa(t)

]
=

[
ηg(t)
ηa(t)

]
(7)

To fit parameters ηg, ηa, a common approach is to collect a
sequence of stationary IMU readings and fit them with using
Allan variance analysis, e.g., as demonstrated in Kalibr [2]:[

ηg(t)
ηa(t)

]
= calibration(ωm static,am static) (8)

The initial values bg(0),ba(0) require extra heuristics to
estimate, such as taking the average of stationary IMU
reading and subtract. Although this simple model captures
the slow variations in bias, its accuracy is limited and
typically requires external sensors to aid inertial navigation.
Additionally, the process involves two steps: first, estimating
dynamic parameters using specific IMU readings, and second
estimating bias based on the dynamic model. The first step
calibration is not only time-consuming but also restrictive, as
it demands an extended period of stationary IMU readings.

IV. LEARNING BIAS FOR IOO

In this section, we thus design a deep neural network to
represent the modeling function fπ (6), which can be trained
end-to-end to predict the IMU bias. This is in contrast to the
classical random walk model, which uses a hand-craft two-
step pipeline and assumes a long period static IMU reading
available. These models are shown to be able to generalize to
unseen readings with good accuracy. The success motivates
us to take the approach of deep learning based bias modeling.[

bg(t)
ba(t)

]
= network(ωm,am) (9)

However, different from the literature, we do not treat it as a
regression problem, assuming bg,ba are fixed value. Instead,
we model them as probability distribution, as p(bg,ba|ω,a).
This probability distribution can be very complex, thus deep
learning model is a good fit to estimate them.

A. Diffusion Model

Diffusion models [30] are generative models that aims to
represent data x0 using a series of latent codes x1, . . . ,xT

through a forward and reverse diffusion process. The forward
process gradually adds noise to the data, encoding it into
a structured latent space, while the reverse process decodes
the latent code back into the original data. Once trained,
the model allows us to sample a latent code xT from a
simple distribution and generate the corresponding data x0

by running the reverse diffusion process. The key strength
of the diffusion model lies in its ability to model highly
complex distribution x0 ∼ q(x), by leveraging the multiple
latent representations between x1 and xT . That is why
we want to use diffusion model to learn conditional bias
distribution. The latent space is structured in such a way that



xT follows a simple Gaussian distribution, making sampling
straightforward.

The encoding process between two latent codes xt−1,xt

is performed by adding Gaussian noise.

xt =
√
1− βtxt−1 +

√
βtϵt−1, ϵt−1 ∼ N (0, 1) (10)

where βt is the hyperparameter that controls the amount
of noise added at each step t, and T is the total number
of diffusion steps. As t increases, the latent variable xt

transitions towards pure Gaussian noise.
At the core of the diffusion model is the denoiser network,

which is described in Sec. IV-B, aiming to estimate the noise
added at each step in the forward process. Given corrupted
data xt and the step t, the network predicts the noise ϵt−1

added at the previous step:

ϵ̂t−1 = ϵθ(xt, t)

The denoiser network is trained using the Mean Squared
Error (MSE) loss on the noise:

∥ϵt−1 − ϵ̂t−1∥2 (11)

This simple training loss function is equivalent to minimizing
the evidence lower bound (ELBO) from variational inference
perspective, which allows the model to approxiamte the
underlying distribition of data x0. To generate a sample from
the diffusion model, we first sample a latent code xT , and
decode it back to original data x0. xT follows a Gaussian
distribution, as conceptually it is the result of adding Gaussian
noise for T steps in the forward process. The sampling process
begins with:

xT ∼ N (0, I) (12)

Next, we use denoiser network to iteratively decode xt back
to xt−1 as follows:

xt−1 =
1√

1− βt

(xt−γtϵθ(xt, t))+σtz, z ∼ N (0, I) (13)

where βt, σt, γt are fixed value. The parameter βt is the same
noise variable used in the forward process, while both βt, σt

are hyperparameters of the diffusion model, controlling the
noise schedule. The parameter γt is a fixed function of βt.

In our bias modeling, x0 corresponds to the original bias
(bg,ba). The bias is the only required training data.

As we want to model the conditional probability distribu-
tion of bias given IMU readings, we introduce an additional
feature vector c extracted from the IMU readings. This feature
c serves as conditional code to the denoiser network at each
step t of the denoising process, so that we can model the
conditional distribution:

ϵ̂t−1 = ϵθ(xt, t, c) (14)

The training and sampling steps remain the same.

B. Model Design

As shown in Fig. 1, we design two models to implement ϵθ
in equation 14: the IMU encoder and the denoiser network of
the diffusion model. The IMU encoder extracts feature code
c and pass it to the denoiser network, as the implementation
of ϵθ(xt, t, c).

Fig. 1: System overview: our model consists of IMU encoder
and denoiser network of the diffusion model. Conditional
code c extracted by IMU encoder from IMU readings is
passed to the denoiser network, to generates the bias with
multiple diffusion steps. Bias is used to correct the IMU
readings for integration, to get the motion estimation.

We choose Temporal Convolutional Network (TCN) as the
IMU encoder, because it effectively captures the temporal
relation in sequential data. It is easy to train and deploy
because it mainly consists of convolutional layers [31].
Previous deep learning based IOO work [16], [17] shows it
can extract useful information in IMU reading sequence.

The second component is the denoiser network for the
diffusion model. It needs to fuse the conditional code c from
IMU encoder with diffusion model latent code xt and step
number t, and then process the fused code with its backbone
to make prediction, and optimize for the loss function in
equation 11. The internal structure is illustrated on the right
of Fig. 1.

The fusion is done with one linear layer, as a simple design.
Since in diffusion models, each denoising step corresponds
to a specific noise level, the timestep information is critical.
Thus, we add sinusoidal positional embedding to the step
number t to provide a smooth, continuous representation of
time, inspired by the design of transformer [32].

Deviating from U-Net [33], a popular design for diffusion
models, we design a lightweight RNN-based network, because
U-Net is computationally expensive with large number of
paramaters, making it less suitable for real-time applications
where efficiency is the key. Our backbone consists of only a
stacked GRU [34] with two cells, followed by a linear layer.
Despite the simple architecture, as demonstrated in Table I,
our network outperforms U-Net, offering better performance
with a significantly smaller architecture.

C. Implementation Details

In practice, we process a window of IMU readings at once,
instead of one-by-one, because the network needs context
information from IMU readings. However, the window can’t
be too long either, because the drift inevitably becomes larger
as the window is larger, even with correction from predicted
bias. We choose one-second window as the window size,



inspired the choice of [17] and [7], striking a balance between
capturing sufficient temporal information and maintaining the
system online performance.

For network training, we allow overlapping between IMU
windows taken from the full IMU reading sequence, so the
network can see more IMU reading patterns. However, too
much overlapping provides very similar data, slowing down
the training without clear benefit. In practice, we find 50%
overlapping to be a good choice.

The training uses Adam optimizer [35], with learning rate
of 3×10−5, taking 6 hours on an NVIDIA A4500 GPU. The
noise schedule is linearly spaced between β1 = 0.0001 and
βT = 0.02, with the model trained for 1000 steps, following
the default setting in [30].

For sampling, we select DDIM [36] to save sampling steps
while maintaining the performance. We use only 25 sampling
steps for bias generation, in contrast to the typical 1000 steps
required by standard DDPM sampling [30].

D. Acquire Bias Ground Truth Data

To train the model, we require the ground truth bias at
the IMU rate. Although the bias is not directly measured by
the sensor since it is observable [37], it can be recovered
through joint optimization of IMU data and other sensors
inputs. Many VINS systems, such as OpenVINS [3], OKVIS
[38] and VINS-Mono [39], provide reliable bias estimates
as part of their state estimation. When additional sensors
like LiDAR [40] or external motion capture system [41] are
available, the bias estimation can be further refined.

Although these bias estimates are typically provided at
the frame rate, we can interpolate them to match the higher
frequency of the IMU. Since IMU bias tends to change slowly
over time, the interpolated values offer sufficient accuracy
for the use as supervision during training.

Empirically, we find that bias recovered through joint
optimization and then interpolated to the IMU rate is of
high quality. When the recovered bias is used to correct the
IMU data, it results in better motion integration performance
compared to bias predicted by deep learning models trained
on integrated motion data. Therefore, the recovered bias can
serve as an effective ground truth signal to guide our network
towards better performance.

Moreover, we observe that the recovered bias is continuous
and changes slowly, consistent with out prior understanding
of IMU bias behavior. This further supports the validity of
using the recovered bias as the ground truth for training the
model.

V. EXPERIMENTAL RESULTS

We conduct our experiments on the EuRoC dataset [41],
using the same training and testing splits as prior studies
[6]. For evaluation metrics, we use relative Positional RMSE
(PRMSE in meters) for position and Relative Orientation Error
(ROE in degrees), consistent with established conventions in
[6].

We compare the performance with the following baselines:

• AirIMU [6], a recent work that predicts bias through in-
direct supervision using integrated motion. This method
achieves state-of-the-art result on EuRoC dataset, out-
performing previous work that also use indirect motion
supervision [23] [5], as well as model-free methods [17].
As expected, the model-free approach, which relies on
motion patterns, performs significantly worse on EuRoC
dataset. By comparing our method with AirIMU, we
indirectly compare it with model-free methods as well.

• Random walk modeling baseline: For this baseline, we
use noise density and random walk rate parameters from
offline calibrated results provided by the EuRoC dataset.
Since the random walk model treats bias as a stochastic
process, its actual performance is difficult to evaluate
directly. We provide a strong baseline as the performance
upper bound. We take the ground truth bias at the start
of each IMU window, and sample multiple bias changes
according to the random walk model. The final bias is
the sum of the initial ground truth bias and the sampled
bias changes. After removing the sampled bias from the
IMU readings and integrating the result, we select the
best result for each window. It should be noted that this is
not a practical algorithm, as it relies on the ground truth
data to choose the optimal result. In our experiments,
we sample bias changes 50 times per window.

• Direct bias regression. This method follows similar
approach to [7], where the network directly regresses
bias values using the ground truth as supervision. For a
fair comparison, we use the same network architecture
as our model, with minimal changes to the output layer
to match dimensions required for regression.
We do not compare directly with the results from [7]
because they only show results using predicted bias
in a factor graph optimization framework with visual
observations, and their code is not publicly available.

The results are presented in table I. Since our model uses
a probabilistic formulation, its predictions are samples from
the learned IMU-conditioned bias distribution. Thus, the
metric reported in the table is averaged over 50 runs. Our
model achieves improved performance in terms of position
error and the second-best orientation error. Our result is
better than the strong random walk baseline, demonstrating
that our bias model is more accurate than commonly used
random walk model in its best case. Compared with direct
regression baseline, our model with almost the same network
has better performance. This shows that our probabilistic
model formulation can better captures the problem nature
than the regression formulation, thus leading to the improved
performance.

In comparison to AirIMU, our model has better position
error but worse orientation error, resulting in a similar overall
performance. As AirIMU is better than the RNN direct
regression baseline, who has similar backbone of TCN and
GRU, the indirect supervision can offer better accuracy than
the direct supervision. However, as we will show in Section
V-A, indirect supervision method may suffer from spurious



TABLE I: Motion estimation result for 1-second window on EuRoC dataset (PRMSE / ROE)

Sequence AirIMU Ours (RNN) Direct Regression (RNN) Random Walk Ours (UNet) Direct Regression (UNet)

MH02 0.0234 / 0.0789 0.0225 / 0.0604 0.0246 / 0.1370 0.0615 / 0.1380 0.0227 / 0.0775 0.0343 / 0.1307

MH04 0.0415 / 0.0708 0.0410 / 0.0636 0.0437 / 0.1551 0.0657 / 0.1413 0.0408 / 0.0593 0.0462 / 0.1233

V103 0.0583 / 0.1884 0.0561 / 0.1931 0.0611 / 0.2369 0.0685 / 0.1762 0.0577 / 0.2185 0.0639 / 0.2574

V202 0.0851 / 0.2157 0.0703 / 0.2557 0.0777 / 0.3010 0.0813 / 0.1877 0.0703 / 0.2627 0.0664 / 0.4179

Average 0.0521 / 0.1385 0.0475 / 0.1432 0.0510 / 0.2075 0.0693 / 0.1608 0.0479 / 0.1545 0.0527 / 0.2323
* the best performance
* the second best performance
* V101 not tested as its ground truth accuracy is limited, as reported in [3]

Fig. 2: Bias prediction result for our model and AirIMU in
an one-second window

prediction. Our method uses the direct supervision while
having similar performance to indirect supervision method,
combining the best of two methods. This is thanks to our
probabilistic formulation implemented with diffusion model,
instead of the existing regression formulation.

A. Diffusion Model vs. Indirect Regression

In this experiment, we compare the bias predictions from
our method with those from AirIMU [6]. As mentioned
earlier, using indirect supervision through integrated motion
can result in spurious bias predictions, as the network may
predict unrealistic bias values to optimize motion integration.
While this is not an issue when the end goal is accurate
integrated motion, it raises concerns about its generalization
ability. If the predicted correction does not correspond to the
actual IMU bias, it may not capture intrinsic IMU properties
and therefore may not generalize well to new data.

We validate this concern in the experiment. As an example,
we randomly select one-second IMU reading window and
plot the predicted bias values alongside the ground truth.
In Fig. 2, our prediction match more closely to the ground
truth in both magnitude and changing pattern, In contrast,
AirIMU’s predictions show abrupt changes, violating our
prior knowledge of IMU bias.

Model Parameters (Millions) Inference Time (ms)
U-Net Architecture 42.8 170
RNN Architecture 2.2 145

TABLE II: Comparison of model parameters and inference
time between U-Net and RNN architectures.

B. Timing on Embedded Device

We evaluate the timing of our pipeline on NVIDIA Jetson
AGX Orin embedded device for both the U-Net architecture
and the proposed lightweight RNN model. As shown in Table
II, the U-Net model has 42.8 million parameters and requires
170 ms for inference, whereas the RNN model is significantly
smaller, with 2.2 million parameters, and achieves a faster
inference time of 145 ms. This demonstrates the efficiency
of the RNN model in terms of both model size and speed.

Low-speed real-world applications can benefit from this
inference time, such as agriculture and warehouse robots. For
more demanding scenarios such as high-speed drone, further
optimization is necessary.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a conditional probability
distribution formulation for the IMU bias modeling. Based
on this formulation, we have designed a conditional diffusion
model to predict the bias from IMU reading, and used it
for inertial-only odometry (IOO). Compared with classical
random walk bias model and regression based neural network,
our model shows better performance and more faithful
prediction, which has been validated on the EuRoC dataset,
showing the effectiveness of our probabilistic formulation.
Although we treat the bias as IMU-conditioned probability
distribution, there is more work to be done to leverage
the probability distribution to make better bias prediction,
rather than taking one random sample as the output. Another
direction for future work is to explore how to provide
uncertainty for the prediction. In all, we believe our new
probabilistic formulation for IMU bias modeling opens up
new opportunity to capture IMU bias and benefits the field
of IOO.
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